
 
 
 
 
 

Application of Moment Expansion Method to Options Square 
Root Model 

  
Project Proposal Statement for AMSC 663 

 
Yun Zhou   zhouyun@math.umd.edu 

Applied Mathematics and Scientific Computation 
University of Maryland, College Park, MD 

 
Advisor: Dr. Steven Heston  sheston@rhsmith.umd.edu 

Department of Finance, Robert H. Smith School of Business 
University of Maryland, College Park, MD 

 
Oct, 2008 
 
 
Abstract 
 
We implement the moment expansion based solution to the Options Square Model and 
we compare it to the Fourier Transform based solution. The stochastic volatility model 
developed by Heston (1993) is used as the Options Square Root Model or Heston Model. 
The governing equations consider not only the stochastic spot return but also stochastic 
volatility, which has a correlation with spot return. Heston (1993) also gave a closed-
form solution for the European Call option price based on Fourier Transform. Different 
from the Fourier Transform approach, we use moment expansion. The moment 
generating function is used to derive 1 to at least 6 order moments to calculate the options 
price. This moment expansion based solution is compared with Fourier Transform based 
solution in terms of accuracy, and implementation difficulty.  
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1 Background 
 
Because it is easy to calculate and explicitly models the relationship of all the variables, 
the Black-Scholes Model has been widely and successfully used in explaining stock 
option prices. However, the strong assumption in Black-Scholes Model that stock returns 
are normally distributed with constant variance and mean is not true in reality. Emprical 
study shows that in reality security prices do not follow a strict stationary log-normal 
process and the variance is non-constant. Starting from this point, some following work 
like Hull and White (1987) proposed a new model with stochastic volatility. These types 
of models could not provide a closed form solutions and involve more numerical 
techniques. Heston(1993) proposed a new stochastic volatility model describing the 
evolution of volatility of the underlying asset and also provided a closed-form solution. 
The basic Heston model assumes that St, the price of the asset, is determined by a 
geometric Brownian motion: 

s
t t t t tdS S dt v S dWμ= +                                                                                    (1) 

where νt, the instantaneous variance, is a CIR (Cox-Ingersoll-Ross)  process: 
( ) v

t t t tdv k v dt v dWθ ξ= − +                                                                              (2) 
s v

t tdW dW dtρ=  
and ,s v

t tdW dW are Wiener Process with correlation ρ. 
The parameters in the above equations represent the following: 

• μ is the average rate of return of the asset.  
• θ is the long vol, or long run average price volatility; as t tends to infinity, the 

expected value of νt tends to θ.  
• κ is the rate at which νt reverts to θ.  
• ξ is the vol of vol, or volatility of the volatility, i.e, the variance of νt.  

The Wiener Process Wt is characterized by three facts: 
1. W0 = 0  
2. Wt is almost surely continuous  
3. Wt has independent increments with distribution (0, )t sW W N t s− −∼  (for 0 ≤ s < 

t).  
N(μ, σ2) denotes the normal distribution with expected value μ and variance σ2. The 
condition that it has independent increments means that if 0 ≤ s1 ≤ t1 ≤ s 2 ≤ t2 then 
Wt1 − Ws1 and Wt2 − Ws2 are independent random variables, and the similar condition 
holds for n increments. An alternative characterization of the Wiener Process is an almost 
surely continuous martingale with W0 = 0 and quadratic variation [Wt, Wt] = t (which 
means that Wt

2-t is also a martingale). 
The CIR process is a Markov process with continuous paths defined by the following 
stochastic differential equation: 

( )t t t tdr r dt r dWθ μ σ= − − +  
where θ and σ are parameters. Value tr  follows a noncentral Chi-Square distribution. The 
CIR process is widely used to model short term interest rate. 
To solve for option pricing, we need to figure out how to determine the option price. 
Consider a European call option which can be only exercised at the expiration date has a 
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payoff ( ( ) )S T K +− , where ( )S T is the asset price at the expiration time T and K  is the 
strike price. We denote ( , ( ))c t S t  as the option price at time t . Then we have the 
termination condition:  

( , ( )) ( ( ) )C T S T S T K += −  
We can also get two boundary conditions: 
1)  ( ,0) 0c t =  for all [0, ]t T∈  
2)  ( )

( )lim [ ( , ( )) ( ( ) )] 0r T t
s T c t S t S t e K− −

→∞ − − =  for all [0, ]t T∈  
We will use these two boundary conditions to solve the problems.  
 
2 Approach 
 
In order to use the moment generating function, we need to get first order to at least sixth 
order moment. Compared with the Fourier transform based solution, we can determine 
the maximum moment order to achieve a high accuracy solution. Here, we go through the 
derivation of the first moment. 
Let ln ( )x S t= , the spot return, according to equation (1), we can have  

1
2( ) s

tdx v dt vdWμ= − +  
At the expiration time ( , , ) nM x v T x= . 
Then, with equation (2) ( ) v

tdv k v dt vdWθ ξ= − + to formulate the Kolmogorov 
Backward Equation: 

21 1 1
2 2 2( ) ( )xx xv vv x vvM vM vM v M k v M Mτρξ ξ μ θ+ + + − + − =                                          (3) 

Guess 
0 0

( , , , ) ( )
n n i

n i j
ij

i j
M x v n C x vτ τ

−

= =

= ∑∑ , when considering n=1, then 

10 01 00( , , ,1) ( ) ( ) ( )M x v C x C v Cτ τ τ τ= + +                                                                             (4) 
Substitute equation (4) into (3), we have 

' ' '1
10 01 10 01 002( ) ( ) ( ) ( ) ( ) ( ) ( )v C k v C C x C v Cμ τ θ τ τ τ τ− + − = + +  

Then we can get two ordinary differential equations,  
'1

10 01 012( ( ) ( )) ( )C kC v C vτ τ τ− + =                                                                                        (5) 
                                                                                          (6) 
 

Since ( , , ,1)M x v xτ = , we can easily get 10 ( ) 1C τ = .  
Solve equation (5) and (6), we get 

01
1e

2
kC A

k
τ−= −  and 00 ( )

2
kC Ae Bτ θθ μ τ−= − + − + , where A and B are constants.  

Similarly, we can get nth order moment writing into the polynomial equations.  
To determine which nth moment is enough to satisfy accuracy requirement, we will use 
the Fourier transform solution as truth and compare the relative error. Therefore, we can 
use the moment expansion solutions as an approximation of the Fourier transform 
solution.  

'
10 01 00( ) ( ) ( )C k C Cμ τ θ τ τ+ =
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Heston (1993) guessed a solution to the Heston model, which involves two parts, one is 
the present value of the spot asset before optimal exercise, and the other is the present 
value of the strike-price payment. The solution has the following form: 

1 2( , , ) ( , )C s v t SP KP t T P= −  
Where ( )( , ) e T tP t T − −=  is the price at time t of a unit discount bond that matures at time T. 
Both of these two terms satisfy equation (3). 

1, 2P P  satisfy the terminal condition, 

( ln[ ])( , , ; ln[ ]) 1j x KP x T Kν ≥= . 
and have characteristic functions ( , , ; )jf x v t φ  respectively which also satisfy equation (3). 

1, 2P P  can be obtained from the solutions of these characteristic functions. Then the call 
option prices can be obtained.  
To check out the accuracy, we compare the Fourier Transform based solutions FC  with 
1st to nth order moment expansion based solutions n

MC . The graph of n
M FC C−& &  and n 

could help us to determine a cutoff and find the good enough estimation.  

3 Implementation 

I will use Mathematica to derive nth order moment equations. The Square Root Model 
with the moment expansion based solutions will be coded in Matlab 7.5. The simulation 
and testing part will also be done in Matlab 7.5. The computation will be done on mobile 
platform (laptop) or on GRACE (Glue Research and Academic Computing Environment) 
which consists of five Sun servers. Two of them have four 1.6 GHz UltraSPARC IIIi 
processors, the other two have four 2.4 GHz Opteron processors and the Oracle server 
has dual 1.5 GHz UltraSPACE IIIi processors. More information on www.grace.umd.edu. 

4 Validation/Testing  

The basic validation is to reduce volatility v  as constant, i.e, tv θ=  and 0ξ = . The 
Heston model is reduced to the Black-Scholes Model, and the model should give the 
solution same as Black-Scholes Model solution. 

We will use estimated parameters in previous literature. The idea to estimate parameter is 
as following. First, use the Heston model solutions to get option prices with fitting stock 
prices, strike prices and interest rate. Then use this to retrieve the corresponding Black-
Scholes model implied volatilities ( , , , , )iσ κ ν ξ ρ θ . Next is to define an objective function, 
which is the sum of squared errors (SSE) here: 

 ' 2

1
( , , , , ) { ( , , , , )}

n

i i
i

SSE κ ν ξ ρ θ σ σ κ ν ξ ρ θ
=

= −∑  where '
iσ  is the observation. 

Finally, minimizing this object function could find the optimal set of parameters. 
 
5 Project Schedule 
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2008 
 
October  
Presentation on Project Proposal  
Finish Project Proposal 
Derive the first to sixth order moment equations in Mathematica 
 
November 
Complete the moment derivation  
Compare the moment expansion solution with Fourier Transform solution to estimate the 
nth moment needed  
 
December 
Use Square Root Model with Fourier Transform based solutions to do data testing 
Midyear presentation 
Finish Midyear Project report 

2009 

January  
Complete coding the Square Root Model with moment expansion solutions in Matlab 
Implement the new solutions to get option prices 
Consider some data testing on this new Model 
 
February 
Compare the Square Root Model with moment expansion based solutions with the one 
with Fourier Transform based solutions to determine a good nth moment 
Use the same WRDS data to test the two models 
Do statistical analysis on the two results.  
 
March 
Begin final project report write-up. 
 
April 
Complete final draft of report including edits from instructor and advisor. 
 
May 
Present final report 
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